Search results

Search for "magnetic particle imaging" in Full Text gives 3 result(s) in Beilstein Journal of Nanotechnology.

Nanocarrier systems loaded with IR780, iron oxide nanoparticles and chlorambucil for cancer theragnostics

  • Phuong-Thao Dang-Luong,
  • Hong-Phuc Nguyen,
  • Loc Le-Tuan,
  • Xuan-Thang Cao,
  • Vy Tran-Anh and
  • Hieu Vu Quang

Beilstein J. Nanotechnol. 2024, 15, 180–189, doi:10.3762/bjnano.15.17

Graphical Abstract
  • . Clinical use of superparamagnetic oxide nanoparticles (SPIONs) has been authorized [9]. SPIONs have been utilized in magnetic particle imaging (MPI), magnetic resonance imaging (MRI), computer tomography (CT), and additional imaging models [9][10][11]. SPIONs have been modified to be applicable to a
PDF
Album
Supp Info
Full Research Paper
Published 06 Feb 2024

Specific absorption rate of randomly oriented magnetic nanoparticles in a static magnetic field

  • Ruslan A. Rytov and
  • Nikolai A. Usov

Beilstein J. Nanotechnol. 2023, 14, 485–493, doi:10.3762/bjnano.14.39

Graphical Abstract
  • hyperthermia; magnetic nanoparticles; magnetic particle imaging; specific absorption rate; static magnetic field; Introduction Magnetic nanoparticles, mainly iron oxides, are promising materials for the diagnosis and therapy of oncological diseases [1][2][3]. Important fields of application of magnetic
  • nanoparticles in biomedicine are magnetic particle imaging (MPI) [4][5][6] and magnetic hyperthermia (MH) [1][2][6][7]. Magnetic hyperthermia uses the ability of magnetic nanoparticles to generate heat under the influence of an external alternating (ac) magnetic field of moderate frequency, f = 200–400 kHz, and
PDF
Album
Full Research Paper
Published 14 Apr 2023

Size-selected Fe3O4–Au hybrid nanoparticles for improved magnetism-based theranostics

  • Maria V. Efremova,
  • Yulia A. Nalench,
  • Eirini Myrovali,
  • Anastasiia S. Garanina,
  • Ivan S. Grebennikov,
  • Polina K. Gifer,
  • Maxim A. Abakumov,
  • Marina Spasova,
  • Makis Angelakeris,
  • Alexander G. Savchenko,
  • Michael Farle,
  • Natalia L. Klyachko,
  • Alexander G. Majouga and
  • Ulf Wiedwald

Beilstein J. Nanotechnol. 2018, 9, 2684–2699, doi:10.3762/bjnano.9.251

Graphical Abstract
  • properties of Fe3O4 NPs give rise to novel therapeutic approaches such as magneto-mechanical cancer treatment [4] and magnetic particle hyperthermia (MPH) [5][6][7] as well as to improvements in diagnostic techniques like magnetic resonance imaging (MRI) [8][9][10] and magnetic particle imaging (MPI) [11][12
PDF
Album
Supp Info
Full Research Paper
Published 16 Oct 2018
Other Beilstein-Institut Open Science Activities